

Flares and their contribution to methane emissions

Eric Kort, eakort@umich.edu University of Michigan ARPA-E REMEDY Workshop

October 20, 2020

Introduction/Background

- Background and area of expertise
 - Associate Professor,
 Department of Climate & Space at University of Michigan
 - For the curious: http://clasp-research.engin.umich.edu/faculty/kort/
 - My group studies the atmosphere, with a focus on greenhouse gases and air pollutants
 - We use ground, airborne, and space-based measurements
 - Of relevance today, my group has worked extensively to improve our understanding of anthropogenic methane emissions, including in-field observations of flaring

Identifying/quantifying emissions

- What are flares?
 - In circumstances where 'excess' hydrocarbons are present, flaring is preferable to venting
 - Occurs predominantly in oil and gas production and processing.
 - Types of flares: Emergency, Process, Production
 - Different durations/quantities.
 - Production flaring makes up majority of gas presently flared.
- What causes methane emissions?
 - Incomplete combustion
 - Unlit flare (vent)

Identifying/quantifying emissions

- How much flaring occurs?
 - In the US (pre-Covid), ~9-10 billion cubic meters of natural gas are flared each year, (>20,000 flares)
 - $\sim 1\%$ of total natural gas withdrawals
 - $\sim 5\%$ of associated gas production at oil wells.
 - US has seen large increases in flaring in the past ~15 years (Bakken, Eagle Ford, Permian basins)
- How are methane emissions characterized?
 - Typically assume flare functions at 98% efficiency with few checks of combustion efficiency or if flare goes unlit.

How flaring has increased, Bakken example

What do we know about combustion efficiency?

- Industry & US EPA assumes flares 98% combustion efficiency
- Real-world airborne sampling of 37 unique flares in the Bakken showed heavy-tail distribution, with median ~97.5%
- Heavy tail leads to >2 times total methane emissions

- To our knowledge, total real-world flares sampled for combustion efficiency to date is only 48 (11 from Caulton et al. study).
- Skewed distribution suggests much greater impact from incomplete combustion.
- We presently are expanding this sampling as part of a project funded by the Alfred P. Sloan foundation (http://graham.umich.edu/f3uel).

October 20, 2020

What do we know about unlit flares?

- Terminology challenge: is an unlit flare just a vent?
 - Sometime vent and flare terminology is used interchangeably
- Limited real-world observations
- EDF Permian Methane Project helicopter surveys
 - https://www.permianmap.org/flaring-emissions
- ~5% of sampled flare stacks unlit and venting methane
 - This would more than double estimated methane contribution

We can't currently clearly answer whether incomplete combustion or unlit flares are a larger CH₄ challenge (or whether they both are comparable problems)

Challenges

- We don't presently know relative importance of efficiency vs. unlit flares (and thus importance compared to other anthropogenic methane challenges)
- We don't have good monitoring of either condition
- My opinion: this problem exists more because it has not received much attention, rather than because technology to improve the circumstance doesn't exist.
- This suggests that with proper characterization of the problem and incentivization emissions from this source could be reduced